A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations

The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear dif...

متن کامل

Unification of reaction and diffusion as a Wasserstein gradient flow

s workshop PDE approximations in Fast reaction – Slow diffusion scenarios Modeling Drug-Protein Dynamics L.A. Peletier In these lectures we analyze a typical multi-(time)-scale dynamical system which arises in the analysis of drugs binding to receptors and proteins in blood plasma. Thanks to the large differences in the reaction rates and in the concentrations of the compounds involved, it is p...

متن کامل

Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction

We study a singular-limit problem arising in the modelling of chemical reactions. At finite ε > 0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1/ε, and in the limit ε→ 0, the solution concentrates onto the two wells, resulting into a limiting system that is a pair of ordinary differential equations...

متن کامل

From a Large-deviations Principle to the Wasserstein Gradient Flow: a New Micro-macro Passage

We study the connection between a system of many independent Brownian particles on one hand and the deterministic diffusion equation on the other. For a fixed time step h > 0, a large-deviations rate functional Jh characterizes the behaviour of the particle system at t = h in terms of the initial distribution at t = 0. For the diffusion equation, a single step in the time-discretized entropy-Wa...

متن کامل

A Primal-Dual Approach for a Total Variation Wasserstein Flow

We consider a nonlinear fourth-order diffusion equation that arises in denoising of image densities. We propose an implicit timestepping scheme that employs a primal-dual method for computing the subgradient of the total variation semi-norm. The constraint on the dual variable is relaxed by adding a penalty term, depending on a parameter that determines the weight of the penalisation. The paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2016

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2015043